The validity of the Nonlinear Schrödinger approximation in higher space dimensions
ثبت نشده
چکیده
The goal of the present work is the proof of approximation results for the Nonlinear Schördinger approximation in higher space dimensions for dispersive systems. The focus is on systems with resonant quadratic terms, which can lead to some explosion before the end of the approximation interval. In higher space dimensions the resonance structure is much more complicated than in case of one space dimension. The proof of approximation results is based on normal form transforms and the use of time-dependent norms. Danksagung Herrn Prof. Dr. Guido Schneider möchte ich für das hochinteressante Thema und die Bereitstellung des Arbeitsplatzes herzlich danken. Ich danke ihm darüber hinaus für jede hilfreiche Unterstützung und für viele inspirierende Diskussionen. Besonders bedanken will ich mich auch für die Gewährung einer DFG-Stelle über das gesamte Forschungsprojekt, was mir ermöglichte, mich voll und ganz meiner Dissertation zu widmen. Mein besonderer Dank gilt auch Herrn Dr. Wolf-Patrick Düll für seine immer freundliche, uneingeschränkte und geduldige Bereitschaft, mir sein groÿes mathematisches Wissen weiterzugeben. Ebenso möchte ich mich bei Herrn Dr. Dominik Zimmermann für sein jederzeit tatkräftiges und herzliches Entgegenkommen bedanken. Mein Dank gilt auch meinen Mitdoktoranden Danish Ali Sunny für die vielen interessanten Gespräche und die tolle Unterstützung. Ein ganz groÿer Dank geht an meine Eltern und meinen Bruder. Ihre Liebe bedeutet mir unbeschreiblich viel. Herzlichen Dank für jede Unterstützung und den groÿen Beistand, den sie jederzeit zu geben bereit waren. Meinem Ehemann Waldemar danke ich aus ganzem Herzen für alles. Für seine Liebe, Ausdauer, Ruhe und Geduld, womit er mir stets zur Seite stand und mich immer wieder aufgemuntert hatte.
منابع مشابه
Efficient Approximation Algorithms for Point-set Diameter in Higher Dimensions
We study the problem of computing the diameter of a set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...
متن کاملThe combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations
In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...
متن کاملDhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations
In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...
متن کاملSolving infinite system of nonlinear integral equations by using F-generalized Meir-Keeler condensing operators, measure of noncompactness and modified homotopy perturbation.
In this article to prove existence of solution of infinite system of nonlinear integral equations, we consider the space of solution containing all convergence sequences with a finite limit, as with a suitable norm is a Banach space. By creating a generalization of Meir-Keeler condensing operators which is named as F-generalized Meir-Keeler condensing operators and measure of noncompactness, we...
متن کاملA New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models
Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014